Statistics-Blog
About MeSearchTags

Interpretable ML

Methods for interpreting ML models

Oct 11, 2020 • Christopher Thiemann • 1 min read

statistics

View On GitHub
Open In Colab
  • SHAP
  • Helper Functions
  • Plot for the Blog Post
  • Sources
  • References

SHAP

Helper Functions

Plot for the Blog Post

Sources

  • Hello This is a markdown page (missing reference)

  • https://interpretable-ml-class.github.io/

  • https://www.trustworthyml.org/
  • https://christophm.github.io/interpretable-ml-book/
  • https://web.stanford.edu/~hastie/Papers/pdp_zhao_final.pdf
  • https://arxiv.org/abs/1811.10154
  • https://www.youtube.com/watch?v=Q8rTrmqUQsU&list=PLtnewl6Gh3udJIG9w1EqHqqTG0tH0YSCx&index=27&t=1552s
  • https://compstat-lmu.github.io/iml_methods_limitations/
  • https://arxiv.org/pdf/2007.04131v1.pdf
  • https://arxiv.org/pdf/1910.13413.pdf
  • https://arxiv.org/pdf/2009.11698.pdf

  • https://github.com/TeamHG-Memex/eli5

  • https://github.com/oracle/Skater
  • https://github.com/interpretml/interpret
  • https://github.com/slundberg/shap
  • https://github.com/Trusted-AI/AIF360
  • https://github.com/jphall663/interpretable_machine_learning_with_python
  • https://github.com/SeldonIO/alibi
  • https://arxiv.org/abs/2010.09337

References

    Subscribe

    A Blog about explaining all different kinds of statistical topics.